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Abstract. We investigate the propagation and interaction of solitons associated with circularly polarized
vibrations in gyrotropic media. The chirality of the structure yields different dispersion laws and hence
different phase and group velocities for the left- and right-handed modes. The helical arrangement of the
monomers is modelled through first- and third-neighbour interactions. The dynamics of the excitations is
governed by a system of coupled discrete nonlinear Schrödinger equations which is studied both analytically
and numerically. Depending on the initial conditions and the interaction constants, different evolutionary
patterns are obtained corresponding to unbound or bound one- and two-soliton solutions. The results can
be applied to the process of energy transfer in helical polymers.

PACS. 63.20.Ry Anharmonic lattice modes – 78.20.Ek Optical activity

1 Introduction

Solitons in molecular chains have been widely investigated
with the aim to explain the mechanism of energy transport
in biological systems [1–3]. Complicated models have been
considered, involving different nonlinear [4,5] and long-
range [6–8] interactions. In [9] a theory of the nonlinear
dynamics of pulses of conjugate circularly polarized in-
tramolecular vibrations in gyrotropic molecular crystals
was developed. It was shown that the gyrotropy associ-
ated with the chiral structure tends to separate the pulses,
while the attractive nonlinear cross-interaction tends to
lock them together. In the present paper we extend the
investigations of [9] taking into account both first- and
third-neighbour interactions. This model is appropriate
for the description of the soliton dynamics in some helical
polymers [10].

2 Analytical solutions

We start with the Hamiltonian for circularly polarized
vibrations in gyrotropic crystals corresponding to the
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Heitler-London approximation [9]:
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where �ω0 is the energy of the intramolecular excita-
tion, A†

n, An and B†
n, Bn are the Bose creation and an-

nihilation operators for right and left circular vibrations
at site n. Mnm are the matrix elements of the inter-
molecular interaction operator, which contain a symmet-
ric part M s

nm corresponding to the dipole-dipole interac-
tion and an antisymmetric part Mas

nm emerging from the
dipole-quadrupole interaction. Within our model, the lat-
ter is responsible for the gyrotropic properties of the sys-
tem. It can be seen that the intermolecular-interaction
terms associated with exchange of right and left circu-
larly polarized vibrations are different and this leads to
different phase and group velocities of the two conjugate
modes. The anharmonic part of the Hamiltonian contains
two terms: the first one ∼ g1describes the nonlinear in-
teraction between quasiparticles of the same type and the
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second ∼ g2 – an elastic interaction between conjugate
quasiparticles in which the energy of each mode (the in-
dividual number of quasiparticles) is conserved.

Writing down the equations of motion for the opera-
tors An and Bn, averaging them with the help of on-site
coherent states of Glauber-type [9] and introducing first-
and third-neighbour interactions

M s
nn+1 = M s

n+1n = M1 , Mas
nn+1 = −Mas

n+1n = −γ1

M s
nn+3 = M s

n+3n = M3 , Mas
nn+3 = −Mas

n+3n = −γ3

M1,M3, γ1, γ3 − real (2)

the following set of equations for the averaged vibrational
amplitudes 〈An〉 ≡ αn and 〈Bn〉 ≡ βn has been obtained:

i�
∂αn

∂t
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+M3(αn+3 + αn−3) − iγ3(αn+3 − αn−3)
+(g1|αn|2 + g2|βn|2)αn ,
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+M3(βn+3 + βn−3) + iγ3(βn+3 − βn−3)
+(g1|βn|2 + g2|αn|2)βn . (3)

The soliton dynamics is determined completely by the
system of coupled discrete nonlinear Schrödinger equa-
tions (3) which we have studied both analytically and nu-
merically.

Analytical solution of (3) in the case of weak anhar-
monicity and long pulses, are sought in the form of ampli-
tude-modulated waves with slowly-varying envelopes

αn(t) = ei(k1n−ω1t)ϕn(t)

βn(t) = ei(k2n−ω2t)ψn(t) (4)

where ki and ωi are the wave numbers and the frequen-
cies of the carrier waves (the lattice constant equals unity).
Within this semi-discrete approach [6] the system (3) re-
duces to
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where

εi = �ω0 + 2(M1 cos ki − (−1)iγ1 sin ki

+M3 cos 3ki − (−1)iγ3 sin 3ki)

bi = M1 cos ki − (−1)iγ1 sin ki

+9(M3 cos 3ki − (−1)iγ3 sin 3ki) , i = 1, 2 (6)
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Fig. 1. Group-velocity dispersion bi and velocity vi for M1 =
−1, M3 = 0.1M1, γ1 = 0.2 and γ3 = 0.1γ1 (i = 1 - dotted line,
i = 2 - dashed line) and for M3 = γ1 = γ3 = 0 - solid line. The
energies are measured in �ω0, the lengths in lattice constants,
and the time in ω−1

0 .

are the exciton energy and the group-velocity dispersion,
respectively.

Without the cross-interaction terms (g2 = 0), the
system (5) decomposes into two uncoupled nonlinear
Schrödinger equations for the conjugate circular ampli-
tudes. The sign of the ratio bi/g1 determines the type of
the soliton solutions. In what follows we shall consider
positive values which yield bright-soliton solutions of the
form:

ϕ(x, t) = ϕ0sech
x− v1t

L1
, ψ(x, t) = ψ0sech

x− v2t

L2

ϕ2
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1
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b2
L2

2

(7)

�v1 = −2[M1 sin k−γ1 cos k+3(M3 sin 3k−γ3 cos 3k)]
�v2 =−2[M1 sin k+γ1 cos k+3(M3 sin 3k+γ3 cos 3k)]

where ϕ0, ψ0; L1, L2; and v1, v2 are the amplitudes, widths
and velocities of the two solitons. This solution describes
non-interacting conjugate pulses, propagating with equal
carrier wave numbers k1 = k2 = k and different velocities
and shapes.

It is important to note, that due to the factors of, re-
spectively, 9 and 3 in front of the terms ∼ M3 and ∼ γ3

in (6) and (7), the effects of the third-neighbour interac-
tions on the group-velocity dispersion and the velocity are
significant (see Fig. 1). This leads to considerable modifi-
cation of the soliton parameters and even a change of the
type of the solution in the regions where this interaction
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changes the sign of bi. Comparatively, third-neighbour in-
teractions play a minor role in the exciton energy εi (6).

When an attractive elastic nonlinear cross-interaction
between the pulses exists (g2 < 0), in the case of small
∆k = k2 − k1, the system (5) possesses an analytical so-
lution:

ϕ(x, t) = ϕ0sech
x− vt

L

ψ(x, t) = ψ0sech
x− vt

L
(8)

with the following relations between the soliton
parameters:
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)
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v = −2�
−1[M1 sin k1 − γ1 cos k1

+3(M3 sin 3k1 − γ3 cos 3k1)] . (9)

The solution (8, 9) describes a soliton bound state which
consists of partial pulses with identical shapes and veloc-
ities and slightly different carrier wave numbers. Depend-
ing on the values of the parameters and on the initial
amplitudes, a linearly polarized pulse can evolve to either
an unbound or a bound one- or two-soliton solution.

3 Numerical results

We have solved numerically the set of discrete equation (3)
for different values of the parameters and different initial
conditions. Figure 2 illustrates the effects of the discrete-
ness in the case of narrow noninteracting solitons. For
L = 10 (Fig. 2a) the solution practically coincides with
the analytical solution (7). In the case of a shorter pulse
however (L = 5, Fig. 2b), as the initial condition is not an
exact solution, the soliton radiates part of its energy and
propagates with a smaller velocity.

In the case of interacting conjugate pulses with k1 =
k2 = k the evolutionary pattern is controlled by the bal-
ance between the kinetic energy of the relative motion of
the pulses

Ukin = −2(γ1 cos k + 3γ3 cos 3k)2

M1 cos k + 9M3 cos 3k
Ne (10)

and the potential energy of their elastic interaction

Upot =
2
3
g2ϕ

2
0Ne (11)

where
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∫ ∞

−∞
ϕ2(x, t) dx =

∫ ∞

−∞
ψ2(x, t) dx (12)
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Fig. 2. Time evolution of an initial soliton (7) with M3 =
0.1M1, M1 = −0.1, γ1 = γ3 = 0, g1 = −0.005, g2 = 0, and
k = 0.6 for (a) L = 10 and (b) L = 5. t is in 1000ω−1

0 units.

is the number of excited vibrational quanta of each mode,
which has been considered to be one and the same. This
corresponds to the physically important case of a linearly
polarized initial pulse whose evolution we have studied
numerically. The condition for bound soliton states is

R =
∣∣∣∣Ukin

Upot

∣∣∣∣ < 1 . (13)

Due to the third-neighbour interaction terms in the ex-
pression for the kinetic energy (10), the condition for
bound solutions (13) differs considerably from the corre-
sponding condition for the case of first-neighbour inter-
action only [9], and the evolutionary patterns in the two
cases can be quite different.

In the case of strong gyrotropy and weak elastic cross-
interaction, when the kinetic energy dominates over the
potential one, an initial linearly-polarized pulse decom-
poses into two circularly-polarized pulses propagating
with different velocities (7). In the opposite case, when
the potential energy dominates (R < 1), the partial pulses
are locked together to form a soliton bound state (Fig. 3).
The wave numbers of the pulses are modified according to
the analytical solution (9) and the energy in each mode
is conserved. The coupling process is accompanied by am-
plitude and position oscillations of the partial pulses. It
can be seen, that third-neighbour interactions (Fig. 3b)
modify the shape and the velocity of the coupled soliton
solution according to (9).

In the intermediate region (R ∼ 1), where the kinetic
energy nearly equals the potential one, the initial pulse
decomposes into two pairs of coupled partial pulses prop-
agating with different relative velocities (Fig. 4). This can
be classified as an asymmetric bound two-soliton solution.
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Fig. 3. Time evolution of interacting partial pulses with initial
k = 0.2 into a bound one-soliton state for γ1 = 0.0035 and
g1 = g2 = −0.005. (a) M3 = γ3 = 0; (b) M3 = 0.05M1 ,
γ3 = 0.05γ1. t is in 1000ω−1

0 units.

The process can be explained qualitatively in the follow-
ing way: the potential energy in this case is not sufficient
for the coupling of the pulses into a single bound-soliton
state and a walk-off effect takes place. However, due to
the nonlinear cross-interaction, part of each partial pulse
splits off the main pulse in the form of a small-amplitude
soliton which is locked to the conjugate large-amplitude
soliton. The relative velocity of the two pairs is smaller
than that of the uncoupled solution. Weaker initial am-
plitudes lead to weaker coupling and strongly asymmetric
two-soliton bound states and for R � 1 the evolution cor-
responds to the uncoupled soliton solution (7).

4 Conclusion

We have shown that third-neighbour interactions, which
are important in some helical polymers, change signifi-
cantly the unbound soliton solutions and their parameters.
They also modify the condition for bound soliton solu-
tions and their parameters. Depending on the geometry
of the helix, second-neighbour interactions may also be
important and should be taken into account. In general,
the long-range interactions increase effectively the size of
the unit cell and the role of the discreteness for narrow
solitons. The dynamics of wide solitons is governed by the

α

β

Fig. 4. Time evolution of the initial partial pulses into a bound
two-soliton state for γ1 = 0.001. All other parameters are the
same as in Figure 3.

nonlinear Schrödiger equations in the continuum limit and
our results in this case are similar to those for optical
solitons in birefringent optical fibers [11].
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